Fall 2015 Deep Learning CMPSCI 697L

Deep Learning Lecture 1

Sridhar Mahadevan Autonomous Learning Lab UMass Amherst

Outline of lecture

- Overview of the course
- What is deep learning?
- Group assignments
- Projects and software resources
- Paper readings

Deep Learning in the Press...

Hinton

Ng

Zuckerberg

LeCun

Kurzweil

Google Hires Brains that Helped Supercharge Machine Learning. Wired 3/2013.

Facebook taps 'Deep Learning' Giant for New AI Lab. Wired 12/2013.

Is "Deep Learning" A Revolutions in Artificial Intelligence? New Yorker 11/2012.

The Man Behind the Google Brain: Andrew Ng and the Quest for the New AI. Wired 5/2013.

New Techniques from Google and Ray Kurzweil Are Taking Artificial Intelligence to Another Level. MIT Technology Review 5/2013.

Course specifics

- Meets 9:05-12, Room 142, Fridays
- Home page: <u>http://www-edlab.cs.umass.edu/</u> <u>cs697l/</u>
- Lecture notes, readings etc: <u>http://www-</u> edlab.cs.umass.edu/cs697I/2015-outline.htm

Course Structure

- Weekly readings
- Participate in class discussions
- Do suggested independent activities
- Mid-term common group project
- Final group project

CMPSCI 6	597L
----------	------

Deep Learning

Fall 2015

Tentative Course Schedule

Lecture	Date	Торіс	Suggested Reading	Further Readings	Independent activity	Public domain software
1	Fri Sept 11th	Historical overview of neural networks; Introduction to Deep Learning	Chapter 1. Learning Deep Architectures for AI	Hacker's guide to neural networks Three Classes of Deep Learning Architectures	Set up Theano on your machine, and run the logistic regression example using the MNIST dataset	Deep learning tutorial using Theano Caffe: Deep learning package in C++ Mocha: Deep learning package in Julia
2	Fri Sept 18th	Deep architectures: feedforward neural nets, convolutional networks, deep generative networks etc.	Chapter 4, Learning Deep Architectures for AI	Learning representations by back-propagating errors	Implement/download a feedforward neural net learner, and experiment with it on some datasets	Implementation of feedforward networks in Theano
3	Fri Sept 25th	Energy-based models; Boltzmann machines; deep belief networks	Chapter 5, Learning Deep Architectures for AI	Fast Learning Algorithm for Deep Belief Networks	Train an RBM or a deep belief network on the MNIST dataset (this requires a relativelu fast PC)	Deep belief networks implemented in Theano

Forum Discussions

Forum	Topic	
Software	Find out new packages for deep learning and report on them	
Papers	Keep track of new papers on deep learning on Arxiv, NIPS, ICML etc.	
Press	What new articles are appearing about deep learning in the media?	
Industry	New startups on deep learning, ideas for startups, etc.	

Grading

Component	Weight
Final Project	40%
Mini Project	40%
Independent Activities	20%

GPUS MAKE DEEP LEARNING ACCESSIBLE

Deep learning with COTS HPC systems A. Coates, B. Huval, T. Wang, D. Wu,

ICML 2013

A. Ng, B. Catanzaro

"Now You Can Build Google's \$1M Artificial Brain on the Cheap "

WIRDD

GOOGLE DATACENTER

1,000 CPU Servers 2,000 CPUs • 16,000 cores 600 kWatts \$5,000,000 STANFORD AI LAB

3 GPU-Accelerated Servers 4 kWatts 12 GPUs • 18,432 cores \$33,000

My GPU machine

nnVidia Tesla K80 GPU card

~6000 processors ~8 Teraflops

Dell Power Edge C4130

Supports 4 Tesla K80 cards

~20,000 GPU Cores

Deep Learning Software

- Theano
- Caffe
- Mocha
- Minerva
- Torch/Lua

What is deep learning?

Deep Learning is an emerging area of machine learning

It uses a hierarchically organized model to learn multi-scale representations

It builds on several ideas: neural networks, graphical models, probabilistic inference, sampling

Human Brain

 10^{11} neurons of > 20 types, 10^{14} synapses, 1ms–10ms cycle time Signals are noisy "spike trains" of electrical potential

Brains vs. Computers

- Highly parallel distributed vs. serial processors
- Content addressable memory vs. random access
- Parallel distributed representation vs. localized representation
- Very slow computing units in the brain

Capabilities of the Brain

- Excels at perception, language, learning, and memory (of some types)
- Poor at arithmetic (can you multiply two 10 digit numbers?)
- Are these capabilities because of its unique architecture?

HISTORICAL BACKGROUND

- 1950s-1960s: Perceptrons, singlelayer neural networks
- I 980s: Feedforward multi-layer networks, back propagation algorithm
- I 990s: Kernel methods, SVMs
- 2005-now: Deep learning

and A.I.

Posted: Tuesday, June 26, 2012

8+1 1.7k **Tweet** 392 Like 446

You probably use <u>machine learning</u> technology dozens of times a day without knowing it—it's a way of training computers on real-world data, and it enables high-quality <u>speech recognition</u>, practical <u>computer vision</u>, email <u>spam blocking</u> and even <u>self-driving cars</u>. But it's far from perfect—you've probably chuckled at poorly transcribed text, a bad translation or a misidentified image. We believe machine learning could be far more accurate, and that smarter computers could make everyday tasks much easier. So our research team has been working on some new approaches to large-scale machine learning.

Today's machine learning technology takes significant work to adapt to new uses. For example, say we're trying to build a system that can distinguish between pictures of cars and motorcycles. In the standard machine learning approach, we first have to collect tens of thousands of pictures that have already been labeled as "car" or "motorcycle"—what we call *labeled data*—to train the system. But labeling takes a lot of work, and there's comparatively little labeled data out there.

Fortunately, recent research on <u>self-taught learning</u> (PDF) and <u>deep learning</u> suggests we might be able to rely instead on *unlabeled data*—such as random images fetched off the web or out of YouTube videos. These algorithms work by building artificial neural networks, which loosely simulate neuronal (i.e., the brain's) learning processes.

We then ran experiments that asked, informally: If we think of our neural network as simulating a very small-scale "newborn brain," and show it YouTube video for a week, what will it learn? Our hypothesis was that it would learn to recognize common objects in those videos. Indeed, to our amusement, one of our artificial neurons learned to respond strongly to pictures of... cats. Remember that this network had never been told what a cat was, nor was it given even a single image labeled as a cat. Instead, it "discovered" what a cat looked like by itself from only unlabeled YouTube stills. That's what we mean by self-taught learning.

Google's cat detector trained on U-tube videos

MIT Technology Review

Facebook Launches Advanced AI Effort to Find Meaning in Your Posts

A technique called deep learning could help Facebook understand its users and their data better.

By Tom Simonite on September 20, 2013

Facebook is set to get an even better understanding of the 700 million people who use the social network to share details of their personal lives each day.

A new research group within the company is working on an emerging and powerful approach to artificial intelligence known as deep learning, which uses simulated networks of brain cells to process data. Applying this method to data shared on Facebook could allow for novel features and perhaps boost the company's ad targeting.

Deep learning has shown potential as the basis for software that could work out the emotions or events described in text even if they aren't explicitly referenced, recognize objects in photos, and make sophisticated predictions about people's likely future behavior.

Yahoo Acquires Startup LookFlow To Work On Flickr And 'Deep Learning'

LookFlow, a startup that describes itself as "an entirely new way to explore images you love," just announced that it has been acquired by Yahoo and will be joining the Flickr team[1,2,3]. The company is cofounded by Bobby Jaros and Simon Osindero. Their company was utilizing deep learning techniques for image recognition problems[1,2].

News sources:

[1] The next web, Emil Protalanski, http://thenextweb.com/insider/2013/10/23/yahoo-acquires-ai-startup-lookflow-improve-discovery-flickr-build-deep-learning-group/

[2] Techcrunch, Anthony Ha, http://techcrunch.com/2013/10/23/yahoo-acquires-startup-lookflow-to-work-on-flickr-and-deer learning/

Lookflow's web site:

[3] https://lookflow.com/

October 23rd, 2013 | Tags: acquisition, lookflow, startup, yahoo | Category: news

Deep Learning evolution

Deep Learning learns layers of features

109

of pixels used in training

10¹⁴ IM GENET

Large-scale Image recognition

IM GENET

www.image-net.org

22K categories and **14M** images

- Animals
 Bird
 Fish
 Mammal
 Invertebrate
 Plants
 Structures
 Artifact
 Artifact
 Artifact
 Tools
 Appliances
 Structures
 Sport Activities

Imagenet Challenge IM GENET Large Scale Visual Recognition Challenge

IM GENET Large Scale Visual Recognition Challenge

NEC-UIUC

[Lin CVPR 2011]

<u>Year 2010</u>

<u>Year 2012</u> SuperVision Max poolin [Krizhevsky NIPS 2012]

flamingo

cock

ruffed grouse

quail

partridge

Egyptian cat

Persian cat Siamese cat

tabby

lynx

partridge

lynx

. . .

• • •

quail

tabby

ILSVRC top-5 error on ImageNet

Reinforcement Learning in games

Samuel's Checker player, 1956, IBM 701

Tesauro, Backgammon, 1992

Deep Mind, Atari, 2015, GPU

TD-Gammon

(Tesauro, 1992)

Figure 1. An illustration of the multilayer perception architecture used in TD-Gammon's neural network. This architecture is also used in the popular backpropagation learning procedure. Figure reproduced from [9].

Program	Training Games	Opponents	Results
TDG 1.0	300,000	Robertie, Davis, Magriel	-13 pts/51 games (-0.25 ppg)
TDG 2.0	800,000	Goulding, Woolsey, Snellings, Russell, Sylvester	-7 pts/38 games (-0.18 ppg)
TDG 2.1	1,500,000	Robertie	–1 pt/40 games (–0.02 ppg)

Table 1. Results of testing TD-Gammon in play against world-classhuman opponents. Version 1.0 used 1-play search for move selection;versions 2.0 and 2.1 used 2-ply search. Version 2.0 had 40 hidden units;versions 1.0 and 2.1 had 80 hidden units.

$$w_{t+1} - w_t = \alpha (Y_{t+1} - Y_t) \sum_{k=1}^t \lambda^{t-k} \nabla_w Y_k$$
$$\mathsf{TD}(\lambda)$$

Deep Reinforcement Learning on the Atari 2600 (Nature, 26 Feb 2015)

Uses deep learning to play 49 games in Atari 2600 series

Montezuma's revenge

Atari Deep Learning Architecture

"Let's see some demos!"

Enduro (1 episode, 50,000 steps, ~20 minutes)

Enduro (20 episodes, 1,000,000 steps, ~7 hours)

Enduro (30 episodes, 1,500,000 steps, ~10 hours)

Results in Enduro

Results: Pong

Pong: after 50,000 steps (~20 minutes)

Pong: after 500,000 steps (~3 hours)

Pong: after 1,500,000 steps (~10 hours)

Pong: after 2,500,000 steps (~20 hours)

Results: Breakout

Breakout (5,000 steps, ~20 minutes)

Breakout (500,000 steps, 3 hours)

Breakout (2,500,000 steps, ~16 hours)

Breakout (5,000,000 steps, ~30 hours)

Results: Pacman

Pacman

Results

Application: Speech

Spectrogram: window in time -> vector of frequences; slide; repeat

Speech Recognition

- DNN is used to replace GMM to learn state output probability in HMM.
- FF and DBN have been used for ASR
- CNN starts being used to further improve WER
- Rectified Linear Activation seems better than Sigmoid
- Models are relatively small (e.g. 5 layers, 2560 neurons/hidden layer)

Li Deng, A Tutorial Survey of Architectures, Algorithms, and Applications for Deep Learning

Slide 22

Task	GMM WER	DNN (%)	Research Group
Switchboard	27.4	18.5	Microsoft
YouTube	52.3	47.6	Google
Broadcast News	17.2	14.9	IBM

Deep Learning in NLP

"obama" —> R¹⁰⁰

(Mikolov et al., NAACL HLT, 2013)

Problem Statement

Relation

capital-common-countries capital-world city-in-state currency family (gender inflections) gram1-adjective-to-adverb gram2-opposite gram3-comparative gram4-superlative gram5-present-participle gram6-nationality-adjective gram7-past-tense gram8-plural (nouns) gram9-plural-verbs

IBM Sabbatical Project

Synonym-Antonym Task

- Training data set: ~87,000 synonym antonym pairs from Wordnet
- Equal distribution of synonyms and antonyms
- Binary classification problem

Synonym-Antonym Task

- * Modified word2vec to use extragradient update
- * Trained on 3 billion Wikipedia corpus (4 million words)
- * Generated feature vectors of varying dimensionality
- Number of synonyms and antonyms split equally among 87,000 word pairs

Synonym or Antonym?

Synonym or Antonym?

Synonym or Antonym?

Classification Results

Sample False Negatives

Moellers glossitis	glossodynia exfoliativa	
major-domo	seneschal	
coral-wood	peacock flower fence	
binge-vomit syndrome	bulima nervosa	
taximan	livery driver	

Quick Overview of Neural Networks

Simple Model of Neuron

Output is a "squashed" linear function of the inputs:

(a) is a step function or threshold function

(b) is a sigmoid function $1/(1+e^{-x})$

Changing the bias weight $W_{0,i}$ moves the threshold location
Boolean Functions

McCulloch and Pitts: every Boolean function can be implemented

Perceptrons are limited

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc.

Represents a linear separator in input space:

Feedforward Networks

Feed-forward network = a parameterized family of nonlinear functions:

$$a_{5} = g(W_{3,5} \cdot a_{3} + W_{4,5} \cdot a_{4})$$

= $g(W_{3,5} \cdot g(W_{1,3} \cdot a_{1} + W_{2,3} \cdot a_{2}) + W_{4,5} \cdot g(W_{1,4} \cdot a_{1} + W_{2,4} \cdot a_{2}))$

Gradient Learning Rule

Learn by adjusting weights to reduce error on training set

The squared error for an example with input \mathbf{x} and true output y is

$$E = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - h_{\mathbf{W}}(\mathbf{x}))^2 ,$$

Perform optimization search by gradient descent:

$$\frac{\partial E}{\partial W_j} = Err \times \frac{\partial Err}{\partial W_j} = Err \times \frac{\partial}{\partial W_j} \left(y - g(\sum_{j=0}^n W_j x_j) \right)$$
$$= -Err \times g'(in) \times x_j$$

Simple weight update rule:

 $W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j$

E.g., +ve error \Rightarrow increase network output

 \Rightarrow increase weights on +ve inputs, decrease on -ve inputs

Multilayer Perceptrons

Layers are usually fully connected; numbers of hidden units typically chosen by hand

What's hard about training feedforward networks?

There are training signals for the output and input layers. But, what are the hidden nodes supposed to compute?

Backpropagation

Forward propagation: compute activation levels of each unit on a particular input

Backpropagation: compute errors

Gradient Training Rule

The squared error on a single example is defined as

$$E = \frac{1}{2} \sum_{i} (y_i - a_i)^2 ,$$

where the sum is over the nodes in the output layer.

$$\frac{\partial E}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial g(in_i)}{\partial W_{j,i}}$$
$$= -(y_i - a_i)g'(in_i) \frac{\partial in_i}{\partial W_{j,i}} = -(y_i - a_i)g'(in_i) \frac{\partial}{\partial W_{j,i}} \left(\sum_{j} W_{j,i} a_j\right)$$
$$= -(y_i - a_i)g'(in_i)a_j = -a_j \Delta_i$$

Hidden Units

Backpropagation Algorithm

- Given: training examples {(x_i,y_i)}, network
- Randomly set initial weights of network
- Repeat
 - For each training example
 - Compute error beginning with output units, and then for each hidden layer of units
 - Adjust weights in direction of lower error
- Until error is acceptable

Backpropagation Algorithm

- Initialize weights to small random values
- REPEAT
 - For each training example:
 - FORWARD PROPAGATION: Fix network inputs using training example and compute network outputs
 - BACKPROPAGATION:
- For output unit k, compute delta value $\Delta_k = a_k (I a_k)(t_k a_k)$
- Compute delta values of hidden units

$$\Delta_{h} = a_{h} (I - a_{h}) \Sigma_{k} W_{hk} \Delta_{k}$$

• Update each network weight

$$W_{ij} = W_{ij} + \eta a_i \Delta_j$$

Facial Pose Detection

Tom Mitchell (CMU)

"Hinton" diagram (showing activation of hidden units)

"Sunglass detector"

Hidden Unit Detectors

ALVINN

ALVINN learns from a human driver

Neural Network

Can drive on actual highways at 70 miles per hour!

ALVINN training

Examples of roads traversed by ALVINN

ALVINN training

Synthetic training data data from actual data

Digit Recognition

3-nearest-neighbor = 2.4% error 400-300-10 unit MLP = 1.6% error LeNet: 768-192-30-10 unit MLP = 0.9%