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Outline of lecture
• Overview of the course 

• What is deep learning? 

• Group assignments 

• Projects and software resources 

• Paper readings





Course specifics

• Meets 9:05-12, Room 142, Fridays 

• Home page: http://www-edlab.cs.umass.edu/
cs697l/ 

• Lecture notes, readings etc: http://www-
edlab.cs.umass.edu/cs697l/2015-outline.htm

http://www-edlab.cs.umass.edu/cs697l/
http://www-edlab.cs.umass.edu/cs697l/2015-outline.htm


Course Structure
• Weekly readings 

• Participate in class discussions 

• Do suggested independent activities 

• Mid-term common group project 

• Final group project





Forum Discussions
Forum Topic

Software Find out new packages for deep 
learning and report on them

Papers
Keep track of new papers on 
deep learning on Arxiv, NIPS, 

ICML etc. 

Press What new articles are appearing 
about deep learning in the media?

Industry New startups on deep learning, 
ideas for startups, etc. 



Grading
Component Weight

Final Project 40%

Mini Project 40%

Independent Activities 20%





My GPU machine 



nnVidia 
Tesla 
K80 
GPU 
card

~6000 processors 
~8 Teraflops



Dell Power Edge C4130 
Supports  4 Tesla K80 cards

~20,000 GPU Cores



Deep Learning Software

• Theano 

• Caffe 

• Mocha 

• Minerva 

• Torch/Lua



Deep Learning is an emerging 
area of machine learning

It uses a hierarchically organized 
model to learn multi-scale 
representations

It builds on several ideas: neural 
networks, graphical models, 
probabilistic inference, sampling

What is deep learning?



Human Brain
Brains

1011 neurons of > 20 types, 1014 synapses, 1ms–10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Chapter 19, Sections 1–5 3



Brains vs. Computers

• Highly parallel distributed vs. serial 
processors

• Content addressable memory vs. random 
access

• Parallel distributed representation vs. 
localized representation

• Very slow computing units in the brain



Capabilities of the Brain

• Excels at perception, language, learning, and 
memory (of some types)

• Poor at arithmetic (can you multiply two 10 
digit numbers?)

• Are these capabilities because of its unique 
architecture?



HISTORICAL BACKGROUND

1950s-1960s: Perceptrons, single-
layer neural networks

1980s: Feedforward multi-layer 
networks, back propagation 
algorithm

1990s: Kernel methods, SVMs

2005-now: Deep learning

Second generation neural networks (~1985)

input vector

hidden 

layers

outputs

Back-propagate  

              error 

signal to get 

derivatives for 

learning

Compare outputs with 

correct answer to get 

error signal
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You  probably  use  machine  learning  technology  dozens  of  times  a  day  without  knowing  it—it’s  a
way  of  training  computers  on  real-world  data,  and  it  enables  high-quality  speech  recognition,
practical  computer  vision,  email  spam  blocking  and  even  self-driving  cars.  But  it’s  far  from
perfect—you’ve  probably  chuckled  at  poorly  transcribed  text,  a  bad  translation  or  a
misidentified  image.  We  believe  machine  learning  could  be  far  more  accurate,  and  that  smarter
computers  could  make  everyday  tasks  much  easier.  So  our  research  team  has  been  working
on  some  new  approaches  to  large-scale  machine  learning.

Today’s  machine  learning  technology  takes  significant  work  to  adapt  to  new  uses.  For
example,  say  we’re  trying  to  build  a  system  that  can  distinguish  between  pictures  of  cars  and
motorcycles.  In  the  standard  machine  learning  approach,  we  first  have  to  collect  tens  of
thousands  of  pictures  that  have  already  been  labeled  as  “car”  or  “motorcycle”—what  we  call
labeled  data—to  train  the  system.  But  labeling  takes  a  lot  of  work,  and  there’s  comparatively
little  labeled  data  out  there.

Fortunately,  recent  research  on  self-taught  learning  (PDF)  and  deep  learning  suggests  we
might  be  able  to  rely  instead  on  unlabeled  data—such  as  random  images  fetched  off  the  web  or
out  of  YouTube  videos.  These  algorithms  work  by  building  artificial  neural  networks,  which
loosely  simulate  neuronal  (i.e.,  the  brain’s)  learning  processes.

Neural  networks  are  very  computationally  costly,  so  to  date,  most  networks  used  in  machine

Using  large-scale  brain  simulations  for  machine  learning

and  A.I.
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learning  have  used  only  1  to  10  million  connections.  But  we  suspected  that  by  training  much
larger  networks,  we  might  achieve  significantly  better  accuracy.  So  we  developed  a  distributed
computing  infrastructure  for  training  large-scale  neural  networks.  Then,  we  took  an  artificial
neural  network  and  spread  the  computation  across  16,000  of  our  CPU  cores  (in  our  data
centers),  and  trained  models  with  more  than  1  billion  connections.  

We  then  ran  experiments  that  asked,  informally:  If  we  think  of  our  neural  network  as  simulating
a  very  small-scale  “newborn  brain,”  and  show  it  YouTube  video  for  a  week,  what  will  it  learn?
Our  hypothesis  was  that  it  would  learn  to  recognize  common  objects  in  those  videos.  Indeed,  to
our  amusement,  one  of  our  artificial  neurons  learned  to  respond  strongly  to  pictures  of...  cats.
Remember  that  this  network  had  never  been  told  what  a  cat  was,  nor  was  it  given  even  a  single
image  labeled  as  a  cat.  Instead,  it  “discovered”  what  a  cat  looked  like  by  itself  from  only
unlabeled  YouTube  stills.  That’s  what  we  mean  by  self-taught  learning.

One  of  the  neurons  in  the  artificial  neural  network,  trained  from  still  frames  from  unlabeled

YouTube  videos,  learned  to  detect  cats.

Using  this  large-scale  neural  network,  we  also  significantly  improved  the  state  of  the  art  on  a
standard  image  classification  test—in  fact,  we  saw  a  70  percent  relative  improvement  in
accuracy.  We  achieved  that  by  taking  advantage  of  the  vast  amounts  of  unlabeled  data
available  on  the  web,  and  using  it  to  augment  a  much  more  limited  set  of  labeled  data.  This  is
something  we’re  really  focused  on—how  to  develop  machine  learning  systems  that  scale  well,
so  that  we  can  take  advantage  of  vast  sets  of  unlabeled  training  data.  

We’re  reporting  on  these  experiments,  led  by  Quoc  Le,  at  ICML  this  week.  You  can  get  more
details  in  our  Google+  post  or  read  the  full  paper  (PDF).

We’re  actively  working  on  scaling  our  systems  to  train  even  larger  models.  To  give  you  a  sense
of  what  we  mean  by  “larger”—while  there’s  no  accepted  way  to  compare  artificial  neural
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By Tom Simonite on September 20, 2013

Facebook Launches Advanced AI Effort to
Find Meaning in Your Posts
A technique called deep learning could help Facebook understand its
users and their data better.

Facebook is set to get an even better understanding of the 700 million people who use the social
network to share details of their personal lives each day.

A new research group within the company is working on an emerging and powerful approach to artificial
intelligence known as deep learning, which uses simulated networks of brain cells to process data.
Applying this method to data shared on Facebook could allow for novel features and perhaps boost the
company’s ad targeting.

Deep learning has shown potential as the basis for software that could work out the emotions or events
described in text even if they aren’t explicitly referenced, recognize objects in photos, and make
sophisticated predictions about people’s likely future behavior.

The eight-person group, known internally as the AI team, only recently started work, and details of its
experiments are still secret. But Facebook’s chief technology officer, Mike Schroepfer, will say that one
obvious way to use deep learning is to improve the news feed, the personalized list of recent updates he
calls Facebook’s “killer app.” The company already uses conventional machine learning techniques to
prune the 1,500 updates that average Facebook users could possibly see down to 30 to 60 that are
judged most likely to be important to them. Schroepfer says Facebook needs to get better at picking the
best updates because its users are generating more data and using the social network in different ways.

“The data set is increasing in size, people are getting more friends, and with the advent of mobile, people
are online more frequently,” Schroepfer told MIT Technology Review. “It’s not that I look at my news feed
once at the end of the day; I constantly pull out my phone while I’m waiting for my friend or I’m at the
coffee shop. We have five minutes to really delight you.”

Shroepfer says deep learning could also be used to help people organize their photos or choose which is
the best one to share on Facebook.



11/19/13 Yahoo Acquires Startup LookFlow To Work On Flickr And ‘Deep Learning’ « Deep Learning

deeplearning.net/2013/10/23/yahoo-acquires-startup-lookflow-to-work-on-flickr-and-deep-learning/ 1/1

       ICLR  2014  »

Yahoo  Acquires  Startup  LookFlow  To  Work

On  Flickr  And  ‘Deep  Learning’

LookFlow,  a  startup  that  describes  itself  as  “an  entirely  new  way  to  explore  images  you  love,”  just  announced  that  it  has
been  acquired  by  Yahoo  and  will  be  joining  the  Flickr  team[1,2,3].  The  company  is  cofounded  by  Bobby  Jaros  and  Simon
Osindero.  Their  company  was  utilizing  deep  learning  techniques  for  image  recognition  problems[1,2].

News  sources:

[1]  The  next  web,  Emil  Protalanski,  http://thenextweb.com/insider/2013/10/23/yahoo-acquires-ai-startup-lookflow-improve-
discovery-flickr-build-deep-learning-group/

[2]  Techcrunch,  Anthony  Ha,  http://techcrunch.com/2013/10/23/yahoo-acquires-startup-lookflow-to-work-on-flickr-and-deep-
learning/

Lookflow’s  web  site:

[3]  https://lookflow.com/

October  23rd,  2013  |  Tags:  acquisition,  lookflow,  startup,  yahoo  |  Category:  news
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Large-scale Image 
recognition
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22K'categories'and'14M'images&

www.image.net.org'

Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009  

•  Animals'
•  Bird'
•  Fish'
•  Mammal'
•  Invertebrate'

'

•  Plants'
•  Tree'
•  Flower'

•  Food'
•  Materials'

•  Structures'
•  ArHfact'

•  Tools'
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•  Structures'

•  Person'
•  Scenes'

•  Indoor'
•  Geological'FormaHons'
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Imagenet Challenge
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The Image Classification Challenge: 
1,000 object classes 
1,431,167 images 

Russakovsky et al. arXiv, 2014 
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•  Break&through&paper:&
ImageNet&Classifica8on&with&
Deep&Convolu8onal&Neural&
Networks&by&Krizhevsky&et&
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Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark;
for example, instead of the PASCAL “dog” category there are 120 di↵erent breeds of dogs in ILSVRC2012-2014 classification
and single-object localization tasks.

are 1000 object classes and approximately 1.2 million
training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.
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training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.
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Reinforcement Learning in games
Samuel’s Checker player, 1956, IBM 701

Deep Mind, Atari, 2015, GPU 

Tesauro, Backgammon, 1992



TD-Gammon 
(Tesauro, 1992)

TD(λ)



Deep Reinforcement Learning  
on the Atari 2600

Uses deep learning 
to play 49 games 

in Atari 2600 series

Montezuma’s revenge

(Nature, 26 Feb 2015)



Atari Deep Learning 
Architecture

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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“Let's see some demos!”



Enduro (1 episode, 50,000 
steps, ~20 minutes)



Enduro (20 episodes, 
1,000,000 steps, ~7 hours)



Enduro (30 episodes, 
1,500,000 steps, ~10 hours)



Results in Enduro



Results: Pong



Pong: after 50,000 steps 
(~20 minutes)



Pong: after 500,000 steps 
(~3 hours)



Pong: after 1,500,000 steps 
(~10 hours)



Pong: after 2,500,000 steps 
(~20 hours)



Results: Breakout



Breakout (5,000 steps, ~20 
minutes)



Breakout (500,000 steps, 3 
hours)



Breakout (2,500,000 steps, 
~16 hours)



Breakout (5,000,000 steps, 
~30 hours)



Results: Pacman



Pacman



Results

see Fig. 3, Supplementary Discussion and Extended Data Table 2). In
additional simulations (see Supplementary Discussion and Extended
Data Tables 3 and 4), we demonstrate the importance of the individual
core components of the DQN agent—the replay memory, separate target
Q-network and deep convolutional network architecture—by disabling
them and demonstrating the detrimental effects on performance.

We next examined the representations learned by DQN that under-
pinned the successful performance of the agent in the context of the game
Space Invaders (see Supplementary Video 1 for a demonstration of the
performance of DQN), by using a technique developed for the visual-
ization of high-dimensional data called ‘t-SNE’25 (Fig. 4). As expected,
the t-SNE algorithm tends to map the DQN representation of percep-
tually similar states to nearby points. Interestingly, we also found instances
in which the t-SNE algorithm generated similar embeddings for DQN
representations of states that are close in terms of expected reward but

perceptually dissimilar (Fig. 4, bottom right, top left and middle), con-
sistent with the notion that the network is able to learn representations
that support adaptive behaviour from high-dimensional sensory inputs.
Furthermore, we also show that the representations learned by DQN
are able to generalize to data generated from policies other than its
own—in simulations where we presented as input to the network game
states experienced during human and agent play, recorded the repre-
sentations of the last hidden layer, and visualized the embeddings gen-
erated by the t-SNE algorithm (Extended Data Fig. 1 and Supplementary
Discussion). Extended Data Fig. 2 provides an additional illustration of
how the representations learned by DQN allow it to accurately predict
state and action values.

It is worth noting that the games in which DQN excels are extremely
varied in their nature, from side-scrolling shooters (River Raid) to box-
ing games (Boxing) and three-dimensional car-racing games (Enduro).

Montezuma's Revenge
Private Eye

Gravitar
Frostbite
Asteroids

Ms. Pac-Man
Bowling

Double Dunk
Seaquest

Venture
Alien

Amidar

River Raid
Bank Heist

Zaxxon

Centipede
Chopper Command

Wizard of Wor
Battle Zone

Asterix
H.E.R.O.

Q*bert
Ice Hockey

Up and Down
Fishing Derby

Enduro
Time Pilot

Freeway
Kung-Fu Master

Tutankham
Beam Rider

Space Invaders
Pong

James Bond
Tennis

Kangaroo
Road Runner

Assault
Krull

Name This Game
Demon Attack

Gopher
Crazy Climber

Atlantis
Robotank

Star Gunner
Breakout

Boxing
Video Pinball

At human-level or above

Below human-level

0 100 200 300 400 4,500%500 1,000600

Best linear learner

DQN

Figure 3 | Comparison of the DQN agent with the best reinforcement
learning methods15 in the literature. The performance of DQN is normalized
with respect to a professional human games tester (that is, 100% level) and
random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 3 (DQN score 2 random play
score)/(human score 2 random play score). It can be seen that DQN

outperforms competing methods (also see Extended Data Table 2) in almost all
the games, and performs at a level that is broadly comparable with or superior
to a professional human games tester (that is, operationalized as a level of
75% or above) in the majority of games. Audio output was disabled for both
human players and agents. Error bars indicate s.d. across the 30 evaluation
episodes, starting with different initial conditions.
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Deep Learning in NLP



“obama” —> R100





Problem Statement

7 Main Results

We repeated the experiments, this time using the
3COSMUL method. Table 3 presents the results,
showing that the multiplicative objective recov-
ers more relational similarities in both representa-
tions. The improvements achieved in the explicit
representation are especially dramatic, with an ab-
solute increase of over 20% correctly identified re-
lations in the MSR and GOOGLE datasets.

Objective Representation MSR GOOGLE

3COSADD
Embedding 53.98% 62.70%

Explicit 29.04% 45.05%

3COSMUL
Embedding 59.09% 66.72%

Explicit 56.83% 68.24%

Table 3: Comparison of 3COSADD and 3COSMUL.

3COSMUL outperforms the state-of-the-art
(3COSADD) on these two datasets. Moreover, the
results illustrate that a comparable amount of rela-
tional similarities can be recovered with both rep-
resentations. This suggests that the linguistic reg-
ularities apparent in neural embeddings are not a
consequence of the embedding process, but rather
are well preserved by it.

On SEMEVAL, 3COSMUL preformed on par
with 3COSADD , recovering a similar amount of
analogies with both explicit and neural representa-
tions (38.37% and 38.67%, respectively).

8 Error Analysis

With 3COSMUL, both the explicit vectors and
the neural embeddings recover similar amounts of
analogies, but are these the same patterns, or per-
haps different types of relational similarities?

8.1 Agreement between Representations

Considering the open-vocabulary tasks (MSR and
GOOGLE), we count the number of times both rep-
resentations guessed correctly, both guessed in-
correctly, and when one representations leads to
the right answer while the other does not (Ta-
ble 4). While there is a large amount of agreement
between the representations, there is also a non-
negligible amount of cases in which they comple-
ment each other. If we were to run in an ora-
cle setup, in which an answer is considered cor-
rect if it is correct in either representation, we
would have achieved an accuracy of 71.9% on the
MSR dataset and 77.8% on GOOGLE.

Both Both Embedding Explicit
Correct Wrong Correct Correct

MSR 43.97% 28.06% 15.12% 12.85%
GOOGLE 57.12% 22.17% 9.59% 11.12%

ALL 53.58% 23.76% 11.08% 11.59%

Table 4: Agreement between the representations on open-
vocabulary tasks.

Relation Embedding Explicit

G
O

O
G

L
E

capital-common-countries 90.51% 99.41%
capital-world 77.61% 92.73%
city-in-state 56.95% 64.69%
currency 14.55% 10.53%
family (gender inflections) 76.48% 60.08%
gram1-adjective-to-adverb 24.29% 14.01%
gram2-opposite 37.07% 28.94%
gram3-comparative 86.11% 77.85%
gram4-superlative 56.72% 63.45%
gram5-present-participle 63.35% 65.06%
gram6-nationality-adjective 89.37% 90.56%
gram7-past-tense 65.83% 48.85%
gram8-plural (nouns) 72.15% 76.05%
gram9-plural-verbs 71.15% 55.75%

M
SR

adjectives 45.88% 56.46%
nouns 56.96% 63.07%
verbs 69.90% 52.97%

Table 5: Breakdown of relational similarities in each repre-
sentation by relation type, using 3COSMUL.

8.2 Breakdown by Relation Type
Table 5 presents the amount of analogies dis-
covered in each representation, broken down by
relation type. Some trends emerge: the ex-
plicit representation is superior in some of the
more semantic tasks, especially geography re-
lated ones, as well as the ones superlatives and
nouns. The neural embedding, however, has the
upper hand on most verb inflections, compara-
tives, and family (gender) relations. Some rela-
tions (currency, adjectives-to-adverbs, opposites)
pose a challenge to both representations, though
are somewhat better handled by the embedded
representations. Finally, the nationality-adjectives
and present-participles are equally handled by
both representations.

8.3 Default-Behavior Errors
The most common error pattern under both repre-
sentations is that of a “default behavior”, in which
one central representative word is provided as an
answer to many questions of the same type. For
example, the word “Fresno” is returned 82 times
as an incorrect answer in the city-in-state rela-
tion in the embedded representation, and the word
“daughter” is returned 47 times as an incorrect an-
swer in the family relation in the explicit represen-

a is to a*
as 

b is to b*
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Synonym-Antonym Task

❖ Training data set: ~87,000 synonym antonym pairs from 
Wordnet

❖ Equal distribution of synonyms and antonyms

❖ Binary classification problem



Synonym-Antonym Task

❖ Modified word2vec to use extragradient update 

❖ Trained on 3 billion Wikipedia corpus (4 million words)

❖ Generated feature vectors of varying dimensionality

❖ Number of synonyms and antonyms split equally 
among 87,000 word pairs
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Synonym or Antonym?
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Classification Results

Results using liblinear



Sample False Negatives

Moellers glossitis glossodynia exfoliativa

major-domo seneschal

coral-wood peacock flower fence

binge-vomit syndrome bulima nervosa

taximan livery driver



Quick Overview of 
Neural Networks



Simple Model of NeuronMcCulloch–Pitts “unit”

Output is a “squashed” linear function of the inputs:

ai ← g(ini) = g
(

ΣjWj,iaj

)

Output

Σ

Input 
Links

Activation 
Function

Input 
Function

Output 
Links

a0 = −1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

Chapter 19, Sections 1–5 4

Real neurons are
much more complex!



Activation Function
Activation functions

(a) (b) 

+1 +1

iniini

g(ini)g(ini)

(a) is a step function or threshold function

(b) is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location

Chapter 19, Sections 1–5 5



Boolean FunctionsImplementing logical functions

AND 

W0 = 1.5 

W1 = 1 

W2 = 1 

OR 

W2 = 1 

W1 = 1 

W0 = 0.5 

NOT 

W1 = 1 

W0 = 0.5 

McCulloch and Pitts: every Boolean function can be implemented

Chapter 19, Sections 1–5 6

W0 = - 0.5

W1 = - 1



Perceptrons are limitedExpressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc.

Represents a linear separator in input space:

ΣjWjxj > 0 or W · x > 0

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)

0 1

0

1

0

1 1

0

0 1 0 1

xor I 2I 1orI 1 I 2and I 1 I 2

Chapter 19, Sections 1–5 10



Feedforward Networks
Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Chapter 19, Sections 1–5 8



Gradient Learning Rule
Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

E =
1

2
Err

2 ≡
1

2
(y − hW(x))2 ,

Perform optimization search by gradient descent:

∂E

∂Wj
= Err ×

∂Err

∂Wj
= Err ×

∂

∂Wj

(

y − g(Σn
j = 0Wjxj)

)

= −Err × g′(in)× xj

Simple weight update rule:

Wj ← Wj + α×Err × g′(in)×xj

E.g., +ve error ⇒ increase network output
⇒ increase weights on +ve inputs, decrease on -ve inputs

Chapter 19, Sections 1–5 11



Multilayer Perceptrons
Multilayer perceptrons

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak

Chapter 19, Sections 1–5 13



What’s hard about training 
feedforward networks?Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Chapter 19, Sections 1–5 8

There are training signals for the 
output and input layers. But, what are 

the hidden nodes supposed to 
compute?



Backpropagation
Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Chapter 19, Sections 1–5 8

Forward propagation: compute 
activation levels of each unit on a 

particular input

Backpropagation: compute errors



Gradient Training Rule
Back-propagation derivation

The squared error on a single example is defined as

E =
1

2
∑

i
(yi − ai)

2 ,

where the sum is over the nodes in the output layer.

∂E

∂Wj,i
= −(yi − ai)

∂ai

∂Wj,i
= −(yi − ai)

∂g(in i)

∂Wj,i

= −(yi − ai)g
′(in i)

∂in i

∂Wj,i
= −(yi − ai)g

′(in i)
∂

∂Wj,i

⎛

⎜

⎝

∑

j
Wj,iaj

⎞

⎟

⎠

= −(yi − ai)g
′(in i)aj = −aj∆i

Chapter 19, Sections 1–5 16



Hidden UnitsBack-propagation derivation contd.

∂E

∂Wk,j
= −

∑

i
(yi − ai)

∂ai

∂Wk,j
= −

∑

i
(yi − ai)

∂g(in i)

∂Wk,j

= −
∑

i
(yi − ai)g

′(in i)
∂in i

∂Wk,j
= −

∑

i
∆i

∂

∂Wk,j

⎛

⎜

⎝

∑

j
Wj,iaj

⎞

⎟

⎠

= −
∑

i
∆iWj,i

∂aj

∂Wk,j
= −

∑

i
∆iWj,i

∂g(inj)

∂Wk,j

= −
∑

i
∆iWj,ig

′(inj)
∂inj

∂Wk,j

= −
∑

i
∆iWj,ig

′(inj)
∂

∂Wk,j

⎛

⎜

⎝

∑

k
Wk,jak

⎞

⎟

⎠

= −
∑

i
∆iWj,ig

′(inj)ak = −ak∆j
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Backpropagation Algorithm

• Given: training examples {(xi,yi)}, network

• Randomly set initial weights of network

• Repeat

• For each training example

• Compute error beginning with output units, 
and then for each hidden layer of units

• Adjust weights in direction of lower error

• Until error is acceptable



Backpropagation Algorithm

• Initialize weights to small random values

• REPEAT 

• For each training example: 

• FORWARD PROPAGATION: Fix network inputs using 
training example and compute network outputs

• BACKPROPAGATION: 

• For output unit k, compute delta value Δk = ak (1-ak)(tk - ak)

• Compute delta values of hidden units 

Δh = ah (1 - ah) Σk Whk Δk

• Update each network weight 

Wij = Wij + η ai Δj



Facial Pose Detection

Tom Mitchell (CMU)

“Hinton”
diagram

(showing activation of
hidden units)

“Sunglass 
detector”



Hidden Unit Detectors

... ...



ALVINN

Neural 
Network

ALVINN learns
from a human driver

Can drive on actual highways at 70   
miles per hour!



ALVINN training

Examples of roads traversed by ALVINN



ALVINN training

Synthetic 
training 

data 
created 
from 
actual 
data



Digit Recognition
Handwritten digit recognition

3-nearest-neighbor = 2.4% error
400–300–10 unit MLP = 1.6% error
LeNet: 768–192–30–10 unit MLP = 0.9%

Chapter 19, Sections 1–5 20


