
Fall 2015 Deep Learning CMPSCI 697L

Deep Learning
Lecture 1

Sridhar Mahadevan
Autonomous Learning Lab
UMass Amherst

COLLEGE

Outline of lecture
• Overview of the course

• What is deep learning?

• Group assignments

• Projects and software resources

• Paper readings

Course specifics

• Meets 9:05-12, Room 142, Fridays

• Home page: http://www-edlab.cs.umass.edu/
cs697l/

• Lecture notes, readings etc: http://www-
edlab.cs.umass.edu/cs697l/2015-outline.htm

http://www-edlab.cs.umass.edu/cs697l/
http://www-edlab.cs.umass.edu/cs697l/2015-outline.htm

Course Structure
• Weekly readings

• Participate in class discussions

• Do suggested independent activities

• Mid-term common group project

• Final group project

Forum Discussions
Forum Topic

Software Find out new packages for deep
learning and report on them

Papers
Keep track of new papers on
deep learning on Arxiv, NIPS,

ICML etc.

Press What new articles are appearing
about deep learning in the media?

Industry New startups on deep learning,
ideas for startups, etc.

Grading
Component Weight

Final Project 40%

Mini Project 40%

Independent Activities 20%

My GPU machine

nnVidia
Tesla
K80
GPU
card

~6000 processors
~8 Teraflops

Dell Power Edge C4130
Supports 4 Tesla K80 cards

~20,000 GPU Cores

Deep Learning Software

• Theano

• Caffe

• Mocha

• Minerva

• Torch/Lua

Deep Learning is an emerging
area of machine learning

It uses a hierarchically organized
model to learn multi-scale
representations

It builds on several ideas: neural
networks, graphical models,
probabilistic inference, sampling

What is deep learning?

Human Brain
Brains

1011 neurons of > 20 types, 1014 synapses, 1ms–10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Chapter 19, Sections 1–5 3

Brains vs. Computers

• Highly parallel distributed vs. serial
processors

• Content addressable memory vs. random
access

• Parallel distributed representation vs.
localized representation

• Very slow computing units in the brain

Capabilities of the Brain

• Excels at perception, language, learning, and
memory (of some types)

• Poor at arithmetic (can you multiply two 10
digit numbers?)

• Are these capabilities because of its unique
architecture?

HISTORICAL BACKGROUND

1950s-1960s: Perceptrons, single-
layer neural networks

1980s: Feedforward multi-layer
networks, back propagation
algorithm

1990s: Kernel methods, SVMs

2005-now: Deep learning

Second generation neural networks (~1985)

input vector

hidden

layers

outputs

Back-propagate

 error

signal to get

derivatives for

learning

Compare outputs with

correct answer to get

error signal

11/19/13 Official Blog: Using large-scale brain simulations for machine learning and A.I.

googleblog.blogspot.com/2012/06/using-large-scale-brain-simulations-for.html 1/11

Insights from Googlers into our products, technology, and the Google culture

 Official Blog

More Next Blog» Create Blog Sign In

Posted: Tuesday, June 26, 2012
1.7k Tweet 392 Like 446

You probably use machine learning technology dozens of times a day without knowing it—it’s a
way of training computers on real-­world data, and it enables high-­quality speech recognition,
practical computer vision, email spam blocking and even self-­driving cars. But it’s far from
perfect—you’ve probably chuckled at poorly transcribed text, a bad translation or a
misidentified image. We believe machine learning could be far more accurate, and that smarter
computers could make everyday tasks much easier. So our research team has been working
on some new approaches to large-­scale machine learning.

Today’s machine learning technology takes significant work to adapt to new uses. For
example, say we’re trying to build a system that can distinguish between pictures of cars and
motorcycles. In the standard machine learning approach, we first have to collect tens of
thousands of pictures that have already been labeled as “car” or “motorcycle”—what we call
labeled data—to train the system. But labeling takes a lot of work, and there’s comparatively
little labeled data out there.

Fortunately, recent research on self-­taught learning (PDF) and deep learning suggests we
might be able to rely instead on unlabeled data—such as random images fetched off the web or
out of YouTube videos. These algorithms work by building artificial neural networks, which
loosely simulate neuronal (i.e., the brain’s) learning processes.

Neural networks are very computationally costly, so to date, most networks used in machine

Using large-­scale brain simulations for machine learning

and A.I.

11/19/13 Official Blog: Using large-scale brain simulations for machine learning and A.I.

googleblog.blogspot.com/2012/06/using-large-scale-brain-simulations-for.html 1/11

Insights from Googlers into our products, technology, and the Google culture

 Official Blog

More Next Blog» Create Blog Sign In

Posted: Tuesday, June 26, 2012
1.7k Tweet 392 Like 446

You probably use machine learning technology dozens of times a day without knowing it—it’s a
way of training computers on real-­world data, and it enables high-­quality speech recognition,
practical computer vision, email spam blocking and even self-­driving cars. But it’s far from
perfect—you’ve probably chuckled at poorly transcribed text, a bad translation or a
misidentified image. We believe machine learning could be far more accurate, and that smarter
computers could make everyday tasks much easier. So our research team has been working
on some new approaches to large-­scale machine learning.

Today’s machine learning technology takes significant work to adapt to new uses. For
example, say we’re trying to build a system that can distinguish between pictures of cars and
motorcycles. In the standard machine learning approach, we first have to collect tens of
thousands of pictures that have already been labeled as “car” or “motorcycle”—what we call
labeled data—to train the system. But labeling takes a lot of work, and there’s comparatively
little labeled data out there.

Fortunately, recent research on self-­taught learning (PDF) and deep learning suggests we
might be able to rely instead on unlabeled data—such as random images fetched off the web or
out of YouTube videos. These algorithms work by building artificial neural networks, which
loosely simulate neuronal (i.e., the brain’s) learning processes.

Neural networks are very computationally costly, so to date, most networks used in machine

Using large-­scale brain simulations for machine learning

and A.I.

11/19/13 Official Blog: Using large-scale brain simulations for machine learning and A.I.

googleblog.blogspot.com/2012/06/using-large-scale-brain-simulations-for.html 2/11

learning have used only 1 to 10 million connections. But we suspected that by training much
larger networks, we might achieve significantly better accuracy. So we developed a distributed
computing infrastructure for training large-­scale neural networks. Then, we took an artificial
neural network and spread the computation across 16,000 of our CPU cores (in our data
centers), and trained models with more than 1 billion connections.

We then ran experiments that asked, informally: If we think of our neural network as simulating
a very small-­scale “newborn brain,” and show it YouTube video for a week, what will it learn?
Our hypothesis was that it would learn to recognize common objects in those videos. Indeed, to
our amusement, one of our artificial neurons learned to respond strongly to pictures of... cats.
Remember that this network had never been told what a cat was, nor was it given even a single
image labeled as a cat. Instead, it “discovered” what a cat looked like by itself from only
unlabeled YouTube stills. That’s what we mean by self-­taught learning.

One of the neurons in the artificial neural network, trained from still frames from unlabeled

YouTube videos, learned to detect cats.

Using this large-­scale neural network, we also significantly improved the state of the art on a
standard image classification test—in fact, we saw a 70 percent relative improvement in
accuracy. We achieved that by taking advantage of the vast amounts of unlabeled data
available on the web, and using it to augment a much more limited set of labeled data. This is
something we’re really focused on—how to develop machine learning systems that scale well,
so that we can take advantage of vast sets of unlabeled training data.

We’re reporting on these experiments, led by Quoc Le, at ICML this week. You can get more
details in our Google+ post or read the full paper (PDF).

We’re actively working on scaling our systems to train even larger models. To give you a sense
of what we mean by “larger”—while there’s no accepted way to compare artificial neural

Google’s
cat

detector
trained on

U-tube
videos

By Tom Simonite on September 20, 2013

Facebook Launches Advanced AI Effort to
Find Meaning in Your Posts
A technique called deep learning could help Facebook understand its
users and their data better.

Facebook is set to get an even better understanding of the 700 million people who use the social
network to share details of their personal lives each day.

A new research group within the company is working on an emerging and powerful approach to artificial
intelligence known as deep learning, which uses simulated networks of brain cells to process data.
Applying this method to data shared on Facebook could allow for novel features and perhaps boost the
company’s ad targeting.

Deep learning has shown potential as the basis for software that could work out the emotions or events
described in text even if they aren’t explicitly referenced, recognize objects in photos, and make
sophisticated predictions about people’s likely future behavior.

The eight-person group, known internally as the AI team, only recently started work, and details of its
experiments are still secret. But Facebook’s chief technology officer, Mike Schroepfer, will say that one
obvious way to use deep learning is to improve the news feed, the personalized list of recent updates he
calls Facebook’s “killer app.” The company already uses conventional machine learning techniques to
prune the 1,500 updates that average Facebook users could possibly see down to 30 to 60 that are
judged most likely to be important to them. Schroepfer says Facebook needs to get better at picking the
best updates because its users are generating more data and using the social network in different ways.

“The data set is increasing in size, people are getting more friends, and with the advent of mobile, people
are online more frequently,” Schroepfer told MIT Technology Review. “It’s not that I look at my news feed
once at the end of the day; I constantly pull out my phone while I’m waiting for my friend or I’m at the
coffee shop. We have five minutes to really delight you.”

Shroepfer says deep learning could also be used to help people organize their photos or choose which is
the best one to share on Facebook.

11/19/13 Yahoo Acquires Startup LookFlow To Work On Flickr And ‘Deep Learning’ « Deep Learning

deeplearning.net/2013/10/23/yahoo-acquires-startup-lookflow-to-work-on-flickr-and-deep-learning/ 1/1

 ICLR 2014 »

Yahoo Acquires Startup LookFlow To Work

On Flickr And ‘Deep Learning’

LookFlow, a startup that describes itself as “an entirely new way to explore images you love,” just announced that it has
been acquired by Yahoo and will be joining the Flickr team[1,2,3]. The company is cofounded by Bobby Jaros and Simon
Osindero. Their company was utilizing deep learning techniques for image recognition problems[1,2].

News sources:

[1] The next web, Emil Protalanski, http://thenextweb.com/insider/2013/10/23/yahoo-­acquires-­ai-­startup-­lookflow-­improve-­
discovery-­flickr-­build-­deep-­learning-­group/

[2] Techcrunch, Anthony Ha, http://techcrunch.com/2013/10/23/yahoo-­acquires-­startup-­lookflow-­to-­work-­on-­flickr-­and-­deep-­
learning/

Lookflow’s web site:

[3] https://lookflow.com/

October 23rd, 2013 | Tags: acquisition, lookflow, startup, yahoo | Category: news

Lecture 1 - !
!
!

Fei-Fei Li & Andrej Karpathy!

1998

2012

LeCun et al.

Krizhevsky
et al.

of transistors # of pixels used in training

of transistors # of pixels used in training

107

1014

106

109

GPUs

5"Jan"15'33'

Large-scale Image
recognition

Lecture 1 - !
!
!

Fei-Fei Li & Andrej Karpathy! 5"Jan"15'22'

22K'categories'and'14M'images&

www.image.net.org'

Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009

•  Animals'
•  Bird'
•  Fish'
•  Mammal'
•  Invertebrate'

'

•  Plants'
•  Tree'
•  Flower'

•  Food'
•  Materials'

•  Structures'
•  ArHfact'

•  Tools'
•  Appliances'
•  Structures'

•  Person'
•  Scenes'

•  Indoor'
•  Geological'FormaHons'

•  Sport'AcHviHes'
'

Imagenet Challenge

Lecture 1 - !
!
!

Fei-Fei Li & Andrej Karpathy! 5"Jan"15'23'

Output:
Scale
T-shirt

Steel drum
Drumstick
Mud turtle

Steel'drum'

✔' ✗'
Output:

Scale
T-shirt

Giant panda
Drumstick
Mud turtle

The Image Classification Challenge:
1,000 object classes
1,431,167 images

Russakovsky et al. arXiv, 2014

Lecture 1 - !
!
!

Fei-Fei Li & Andrej Karpathy!

ConvoluHon'
Pooling'
SoMmax'
Other'

GoogLeNet VGG MSRA SuperVision

[Krizhevsky NIPS 2012]

Year 2012 Year 2014 Year 2010

Dense'grid'descriptor:'
HOG,'LBP'

Coding:'local'coordinate,'
super"vector'

Pooling,'SPM'

Linear'SVM'

NEC-UIUC

[Lin CVPR 2011] [Szegedy arxiv 2014] [Simonyan arxiv 2014] [He arxiv 2014]

5"Jan"15'31'

Deep&Learning&for&Computer&Vision&

•  Most&deep&learning&groups&
have&(un8l&recently)&largely&
focused&on&computer&vision&

•  Break&through&paper:&
ImageNet&Classifica8on&with&
Deep&Convolu8onal&Neural&
Networks&by&Krizhevsky&et&
al.&2012&

Richard&Socher& Lecture&1,&Slide&18&18&
Zeiler&and&Fergus&(2013)&

8 Olga Russakovsky* et al.

PASCAL ILSVRC

b
ir
d
s

· · ·

ca
ts

· · ·

d
og

s

· · ·

Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark;
for example, instead of the PASCAL “dog” category there are 120 di↵erent breeds of dogs in ILSVRC2012-2014 classification
and single-object localization tasks.

are 1000 object classes and approximately 1.2 million
training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

7KH�ZHLJKWV�RI�WKLV�QHXURQ�YLVXDOL]HG

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

Deep&Learning&for&Computer&Vision&

•  Most&deep&learning&groups&
have&(un8l&recently)&largely&
focused&on&computer&vision&

•  Break&through&paper:&
ImageNet&Classifica8on&with&
Deep&Convolu8onal&Neural&
Networks&by&Krizhevsky&et&
al.&2012&

Richard&Socher& Lecture&1,&Slide&18&18&
Zeiler&and&Fergus&(2013)&

8 Olga Russakovsky* et al.

PASCAL ILSVRC

b
ir
d
s

· · ·

ca
ts

· · ·

d
og

s

· · ·

Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark;
for example, instead of the PASCAL “dog” category there are 120 di↵erent breeds of dogs in ILSVRC2012-2014 classification
and single-object localization tasks.

are 1000 object classes and approximately 1.2 million
training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

7KH�ZHLJKWV�RI�WKLV�QHXURQ�YLVXDOL]HG

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

Reinforcement Learning in games
Samuel’s Checker player, 1956, IBM 701

Deep Mind, Atari, 2015, GPU

Tesauro, Backgammon, 1992

TD-Gammon
(Tesauro, 1992)

TD(λ)

Deep Reinforcement Learning
on the Atari 2600

Uses deep learning
to play 49 games

in Atari 2600 series

Montezuma’s revenge

(Nature, 26 Feb 2015)

Atari Deep Learning
Architecture

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.

RESEARCH LETTER

5 3 0 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

“Let's see some demos!”

Enduro (1 episode, 50,000
steps, ~20 minutes)

Enduro (20 episodes,
1,000,000 steps, ~7 hours)

Enduro (30 episodes,
1,500,000 steps, ~10 hours)

Results in Enduro

Results: Pong

Pong: after 50,000 steps
(~20 minutes)

Pong: after 500,000 steps
(~3 hours)

Pong: after 1,500,000 steps
(~10 hours)

Pong: after 2,500,000 steps
(~20 hours)

Results: Breakout

Breakout (5,000 steps, ~20
minutes)

Breakout (500,000 steps, 3
hours)

Breakout (2,500,000 steps,
~16 hours)

Breakout (5,000,000 steps,
~30 hours)

Results: Pacman

Pacman

Results

see Fig. 3, Supplementary Discussion and Extended Data Table 2). In
additional simulations (see Supplementary Discussion and Extended
Data Tables 3 and 4), we demonstrate the importance of the individual
core components of the DQN agent—the replay memory, separate target
Q-network and deep convolutional network architecture—by disabling
them and demonstrating the detrimental effects on performance.

We next examined the representations learned by DQN that under-
pinned the successful performance of the agent in the context of the game
Space Invaders (see Supplementary Video 1 for a demonstration of the
performance of DQN), by using a technique developed for the visual-
ization of high-dimensional data called ‘t-SNE’25 (Fig. 4). As expected,
the t-SNE algorithm tends to map the DQN representation of percep-
tually similar states to nearby points. Interestingly, we also found instances
in which the t-SNE algorithm generated similar embeddings for DQN
representations of states that are close in terms of expected reward but

perceptually dissimilar (Fig. 4, bottom right, top left and middle), con-
sistent with the notion that the network is able to learn representations
that support adaptive behaviour from high-dimensional sensory inputs.
Furthermore, we also show that the representations learned by DQN
are able to generalize to data generated from policies other than its
own—in simulations where we presented as input to the network game
states experienced during human and agent play, recorded the repre-
sentations of the last hidden layer, and visualized the embeddings gen-
erated by the t-SNE algorithm (Extended Data Fig. 1 and Supplementary
Discussion). Extended Data Fig. 2 provides an additional illustration of
how the representations learned by DQN allow it to accurately predict
state and action values.

It is worth noting that the games in which DQN excels are extremely
varied in their nature, from side-scrolling shooters (River Raid) to box-
ing games (Boxing) and three-dimensional car-racing games (Enduro).

Montezuma's Revenge
Private Eye

Gravitar
Frostbite
Asteroids

Ms. Pac-Man
Bowling

Double Dunk
Seaquest

Venture
Alien

Amidar

River Raid
Bank Heist

Zaxxon

Centipede
Chopper Command

Wizard of Wor
Battle Zone

Asterix
H.E.R.O.

Q*bert
Ice Hockey

Up and Down
Fishing Derby

Enduro
Time Pilot

Freeway
Kung-Fu Master

Tutankham
Beam Rider

Space Invaders
Pong

James Bond
Tennis

Kangaroo
Road Runner

Assault
Krull

Name This Game
Demon Attack

Gopher
Crazy Climber

Atlantis
Robotank

Star Gunner
Breakout

Boxing
Video Pinball

At human-level or above

Below human-level

0 100 200 300 400 4,500%500 1,000600

Best linear learner

DQN

Figure 3 | Comparison of the DQN agent with the best reinforcement
learning methods15 in the literature. The performance of DQN is normalized
with respect to a professional human games tester (that is, 100% level) and
random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 3 (DQN score 2 random play
score)/(human score 2 random play score). It can be seen that DQN

outperforms competing methods (also see Extended Data Table 2) in almost all
the games, and performs at a level that is broadly comparable with or superior
to a professional human games tester (that is, operationalized as a level of
75% or above) in the majority of games. Audio output was disabled for both
human players and agents. Error bars indicate s.d. across the 30 evaluation
episodes, starting with different initial conditions.

LETTER RESEARCH

2 6 F E B R U A R Y 2 0 1 5 | V O L 5 1 8 | N A T U R E | 5 3 1

Macmillan Publishers Limited. All rights reserved©2015

Human-Level
play

Deep Learning in NLP

“obama” —> R100

Problem Statement

7 Main Results

We repeated the experiments, this time using the
3COSMUL method. Table 3 presents the results,
showing that the multiplicative objective recov-
ers more relational similarities in both representa-
tions. The improvements achieved in the explicit
representation are especially dramatic, with an ab-
solute increase of over 20% correctly identified re-
lations in the MSR and GOOGLE datasets.

Objective Representation MSR GOOGLE

3COSADD
Embedding 53.98% 62.70%

Explicit 29.04% 45.05%

3COSMUL
Embedding 59.09% 66.72%

Explicit 56.83% 68.24%

Table 3: Comparison of 3COSADD and 3COSMUL.

3COSMUL outperforms the state-of-the-art
(3COSADD) on these two datasets. Moreover, the
results illustrate that a comparable amount of rela-
tional similarities can be recovered with both rep-
resentations. This suggests that the linguistic reg-
ularities apparent in neural embeddings are not a
consequence of the embedding process, but rather
are well preserved by it.

On SEMEVAL, 3COSMUL preformed on par
with 3COSADD , recovering a similar amount of
analogies with both explicit and neural representa-
tions (38.37% and 38.67%, respectively).

8 Error Analysis

With 3COSMUL, both the explicit vectors and
the neural embeddings recover similar amounts of
analogies, but are these the same patterns, or per-
haps different types of relational similarities?

8.1 Agreement between Representations

Considering the open-vocabulary tasks (MSR and
GOOGLE), we count the number of times both rep-
resentations guessed correctly, both guessed in-
correctly, and when one representations leads to
the right answer while the other does not (Ta-
ble 4). While there is a large amount of agreement
between the representations, there is also a non-
negligible amount of cases in which they comple-
ment each other. If we were to run in an ora-
cle setup, in which an answer is considered cor-
rect if it is correct in either representation, we
would have achieved an accuracy of 71.9% on the
MSR dataset and 77.8% on GOOGLE.

Both Both Embedding Explicit
Correct Wrong Correct Correct

MSR 43.97% 28.06% 15.12% 12.85%
GOOGLE 57.12% 22.17% 9.59% 11.12%

ALL 53.58% 23.76% 11.08% 11.59%

Table 4: Agreement between the representations on open-
vocabulary tasks.

Relation Embedding Explicit

G
O

O
G

L
E

capital-common-countries 90.51% 99.41%
capital-world 77.61% 92.73%
city-in-state 56.95% 64.69%
currency 14.55% 10.53%
family (gender inflections) 76.48% 60.08%
gram1-adjective-to-adverb 24.29% 14.01%
gram2-opposite 37.07% 28.94%
gram3-comparative 86.11% 77.85%
gram4-superlative 56.72% 63.45%
gram5-present-participle 63.35% 65.06%
gram6-nationality-adjective 89.37% 90.56%
gram7-past-tense 65.83% 48.85%
gram8-plural (nouns) 72.15% 76.05%
gram9-plural-verbs 71.15% 55.75%

M
SR

adjectives 45.88% 56.46%
nouns 56.96% 63.07%
verbs 69.90% 52.97%

Table 5: Breakdown of relational similarities in each repre-
sentation by relation type, using 3COSMUL.

8.2 Breakdown by Relation Type
Table 5 presents the amount of analogies dis-
covered in each representation, broken down by
relation type. Some trends emerge: the ex-
plicit representation is superior in some of the
more semantic tasks, especially geography re-
lated ones, as well as the ones superlatives and
nouns. The neural embedding, however, has the
upper hand on most verb inflections, compara-
tives, and family (gender) relations. Some rela-
tions (currency, adjectives-to-adverbs, opposites)
pose a challenge to both representations, though
are somewhat better handled by the embedded
representations. Finally, the nationality-adjectives
and present-participles are equally handled by
both representations.

8.3 Default-Behavior Errors
The most common error pattern under both repre-
sentations is that of a “default behavior”, in which
one central representative word is provided as an
answer to many questions of the same type. For
example, the word “Fresno” is returned 82 times
as an incorrect answer in the city-in-state rela-
tion in the embedded representation, and the word
“daughter” is returned 47 times as an incorrect an-
swer in the family relation in the explicit represen-

a is to a*
as

b is to b*

IBM Sabbatical Project

Wikipedia
Dataset

Extragradient
Word2vec

Extragradient
SVM

Relationship
prediction

Wordnet
Synonym

Google

Synonym-Antonym Task

❖ Training data set: ~87,000 synonym antonym pairs from
Wordnet

❖ Equal distribution of synonyms and antonyms

❖ Binary classification problem

Synonym-Antonym Task

❖ Modified word2vec to use extragradient update

❖ Trained on 3 billion Wikipedia corpus (4 million words)

❖ Generated feature vectors of varying dimensionality

❖ Number of synonyms and antonyms split equally
among 87,000 word pairs

Synonym or Antonym?

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

Turks−cap
Lilium martagon

Synonym or Antonym?

0 5 10 15 20 25
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

bleeding heart
lyreflower

Synonym or Antonym?

0 5 10 15 20 25
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

blow up
deflate

Classification Results

Results using liblinear

Sample False Negatives

Moellers glossitis glossodynia exfoliativa

major-domo seneschal

coral-wood peacock flower fence

binge-vomit syndrome bulima nervosa

taximan livery driver

Quick Overview of
Neural Networks

Simple Model of NeuronMcCulloch–Pitts “unit”

Output is a “squashed” linear function of the inputs:

ai ← g(ini) = g
(

ΣjWj,iaj

)

Output

Σ

Input
Links

Activation
Function

Input
Function

Output
Links

a0 = −1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

Chapter 19, Sections 1–5 4

Real neurons are
much more complex!

Activation Function
Activation functions

(a) (b)

+1 +1

iniini

g(ini)g(ini)

(a) is a step function or threshold function

(b) is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location

Chapter 19, Sections 1–5 5

Boolean FunctionsImplementing logical functions

AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 = 0.5

NOT

W1 = 1

W0 = 0.5

McCulloch and Pitts: every Boolean function can be implemented

Chapter 19, Sections 1–5 6

W0 = - 0.5

W1 = - 1

Perceptrons are limitedExpressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc.

Represents a linear separator in input space:

ΣjWjxj > 0 or W · x > 0

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)

0 1

0

1

0

1 1

0

0 1 0 1

xor I 2I 1orI 1 I 2and I 1 I 2

Chapter 19, Sections 1–5 10

Feedforward Networks
Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Chapter 19, Sections 1–5 8

Gradient Learning Rule
Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

E =
1

2
Err

2 ≡
1

2
(y − hW(x))2 ,

Perform optimization search by gradient descent:

∂E

∂Wj
= Err ×

∂Err

∂Wj
= Err ×

∂

∂Wj

(

y − g(Σn
j = 0Wjxj)

)

= −Err × g′(in)× xj

Simple weight update rule:

Wj ← Wj + α×Err × g′(in)×xj

E.g., +ve error ⇒ increase network output
⇒ increase weights on +ve inputs, decrease on -ve inputs

Chapter 19, Sections 1–5 11

Multilayer Perceptrons
Multilayer perceptrons

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak

Chapter 19, Sections 1–5 13

What’s hard about training
feedforward networks?Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Chapter 19, Sections 1–5 8

There are training signals for the
output and input layers. But, what are

the hidden nodes supposed to
compute?

Backpropagation
Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Chapter 19, Sections 1–5 8

Forward propagation: compute
activation levels of each unit on a

particular input

Backpropagation: compute errors

Gradient Training Rule
Back-propagation derivation

The squared error on a single example is defined as

E =
1

2
∑

i
(yi − ai)

2 ,

where the sum is over the nodes in the output layer.

∂E

∂Wj,i
= −(yi − ai)

∂ai

∂Wj,i
= −(yi − ai)

∂g(in i)

∂Wj,i

= −(yi − ai)g
′(in i)

∂in i

∂Wj,i
= −(yi − ai)g

′(in i)
∂

∂Wj,i

⎛

⎜

⎝

∑

j
Wj,iaj

⎞

⎟

⎠

= −(yi − ai)g
′(in i)aj = −aj∆i

Chapter 19, Sections 1–5 16

Hidden UnitsBack-propagation derivation contd.

∂E

∂Wk,j
= −

∑

i
(yi − ai)

∂ai

∂Wk,j
= −

∑

i
(yi − ai)

∂g(in i)

∂Wk,j

= −
∑

i
(yi − ai)g

′(in i)
∂in i

∂Wk,j
= −

∑

i
∆i

∂

∂Wk,j

⎛

⎜

⎝

∑

j
Wj,iaj

⎞

⎟

⎠

= −
∑

i
∆iWj,i

∂aj

∂Wk,j
= −

∑

i
∆iWj,i

∂g(inj)

∂Wk,j

= −
∑

i
∆iWj,ig

′(inj)
∂inj

∂Wk,j

= −
∑

i
∆iWj,ig

′(inj)
∂

∂Wk,j

⎛

⎜

⎝

∑

k
Wk,jak

⎞

⎟

⎠

= −
∑

i
∆iWj,ig

′(inj)ak = −ak∆j

Chapter 19, Sections 1–5 17

Backpropagation Algorithm

• Given: training examples {(xi,yi)}, network

• Randomly set initial weights of network

• Repeat

• For each training example

• Compute error beginning with output units,
and then for each hidden layer of units

• Adjust weights in direction of lower error

• Until error is acceptable

Backpropagation Algorithm

• Initialize weights to small random values

• REPEAT

• For each training example:

• FORWARD PROPAGATION: Fix network inputs using
training example and compute network outputs

• BACKPROPAGATION:

• For output unit k, compute delta value Δk = ak (1-ak)(tk - ak)

• Compute delta values of hidden units

Δh = ah (1 - ah) Σk Whk Δk

• Update each network weight

Wij = Wij + η ai Δj

Facial Pose Detection

Tom Mitchell (CMU)

“Hinton”
diagram

(showing activation of
hidden units)

“Sunglass
detector”

Hidden Unit Detectors

... ...

ALVINN

Neural
Network

ALVINN learns
from a human driver

Can drive on actual highways at 70
miles per hour!

ALVINN training

Examples of roads traversed by ALVINN

ALVINN training

Synthetic
training

data
created
from
actual
data

Digit Recognition
Handwritten digit recognition

3-nearest-neighbor = 2.4% error
400–300–10 unit MLP = 1.6% error
LeNet: 768–192–30–10 unit MLP = 0.9%

Chapter 19, Sections 1–5 20

